Студопедия.Орг Главная | Случайная страница | Контакты | Заказать
 

ГЛАВА 1 МАТЕМАТИЧЕСКИЕ МОДЕЛИ СИГНАЛОВ 3 страница



Учитывая соотношения (1.15) и (1.16), запишем

Воспользовавшись формулой Эйлера (1.14) и обозначив φ(kw1) через φk, окончательно получим

Распространена и другая тригонометрическая форма ряда Фурье, имеющая вид

Однако она менее удобна для практического применения. Отдельные составляющие в представлениях (1.23) и (1.24) называют гармониками. Как спектр амплитуд, так и спектр фаз периодического сигнала удобно представлять наглядно спектральными диаграммами. На диаграмме спектра амплитуд каждой гармонике ставится в соответствие вертикальный отрезок, длина которого пропорциональна амплитуде, а расположение на оси абсцисс отвечает частоте этой составляющей. Аналогично на диаграмме спектра фаз обозначают значения фаз гармоник. Поскольку в результате спектры отображаются совокупностями линий, их часто называют линейчатыми.

Отметим, что дискретный (линейчатый) спектр не обязательно должен принадлежать периодическому сигналу. Спектр периодического сигнала характеризует совокупность гармоник, кратных основной частоте ωι. Линейчатые спектры, включающие гармоники некратных частот, принадлежат так называемым почти периодическим сигналам. Диаграмма спектра амплитуд периодического сигнала показана на рис. 1.4. Огибающую A(t) этого спектра амплитуд можно получить, заменив kw1 в A(kw1) на ω, где ω = kω1 для k-й гармоники.

Пример 1.1. Определить спектры амплитуд и фаз периодической последовательности прямоугольных импульсов длительностью τ и амплитудой u0, следующих с частотой ω1 = 2π/Τ (рис. 1.5).

Функция u(t), описывающая такую последовательность импульсов на периоде, может быть задана в виде:

В соответствии с (1.16) имеем

или

Амплитуды гармоник, включая постоянную составляющую, равную А0/2, определим из выражения

при k = О, 1, 2, ....

Выбор начала отсчета времени на их величину не влияет. Огибающая спектра амплитуд определяется видом функции

При ω = 0 получаем

Характер изменения амплитуд диктуется функцией sin х/х и не зависит от частоты следования импульсов. На частотах, кратных 2π/τ, огибающая спектра равна нулю.

На рис. 1.6 приведена диаграмма спектра амплитуд для случая

Τ/τ = 3[ω1 = 2π/(3τ)]. Число составляющих в спектре бесконечно велико. Крутизна фронтов импульсов обусловлена наличием в спектре составляющих с частотами, существенно превышающими основную частоту ω1.


Наверх